
GATS Page 1 – 12 G. Santor

GATS Companion to
Style and Idiom
Author: Garth Santor
Editors: Trinh Hān
Copyright Dates: 2003, 2005, 2019
Version: 1.1.0 (2019-01-28)

Introduction
Programmers write code to communicate ideas, both the computer that will run the program and to the other

programmers that will read their code. Language syntax, grammar and semantics are essential and sufficient to

communicate ideas to a computer. For human readers of code this is not so. Unlike computers, our ability to

comprehend code can be helped or hindered by the style and choice of idiom employed by the author.

What is style and idiom? And how do they affect a programmer’s comprehension of code?

Style
Style has been defined as “n. 1. Manner of expressing thought, in writing or speaking; distinctive or characteristic

form of expression: a florid style; the style of Mark Twain. … 10. The conventions of typography, design, usage,
punctuation, etc., observed by a given publishing house, printing office, or publication (FW-78).” The essence of

style in programming is not the meaning or function of code, but its presentation. The following code segments are

functionally identical, but possessing radically different styles.

unsigned a(unsigned b){return b<=1?1:b*a(b-1);}

/*! \brief Recursive factorial.

 \return Factorial of n, n! A natural number.

 \param n [in] the top term of the factorial. A natural number. */

unsigned factorial(unsigned n) {

 if (n <= 1)

 return 1;

 else

 return n * factorial(n – 1);

}

Idiom
Idiom is defined as “n. 1. An expression peculiar to a language, not readily understandable from its grammatical

construction or from the meaning of its component parts. … 3. The special terminology or mode of expression of a

class, occupational group, etc.: legal idiom (FW-78).” Idiom has much more to with implementation rather than

presentation. Idiom focuses on the structure and sequencing of code, the choice of statements or operators and the

accepted practices of professional programmers regarding these issues.

Names/Identifiers
Identifiers are the names assigned by a user to a program element such as a variable, constant, function,

method, type class, or namespace.

GATS Page 2 – 12 G. Santor

Terminology
1. Identifiers have three parts, a prefix, a name, and a suffix.

e.g. strFileName str = prefix, FileName = name

e.g. time_t time = name, _t = suffix

2. Lower-case identifiers are composed entirely of lower case letters.

e.g. size

3. Upper-case identifiers are composed entirely of upper case letters.

e.g. UCHAR

4. Title-case identifiers are all lower case except for the first letter of each distinct word.

e.g. GetTickCount

5. Camelback-case identifiers are all lower case except for the first letter of each distinct word, but not the

first word.

e.g. strFileName

6. Saddleback-case identifiers are all lower case except that each distinct word is separated by an underscore

character.

e.g. selection_sort

7. Procedure type of function that does not return a value.

Rules
1. Be consistent!

2. Use descriptive names for global and class members, short names for locals (KP-99).

3. Variable and constant names should be nouns that describe the contents of the variable.

e.g. int counter; // bad – describes a counting device
 int count; // good – describes the number

a. Boolean variables should identify the true condition.

e.g. bool isRunning = false;

4. Use active names for functions and procedures. Use a strong verb and perhaps a noun to describe, 1) the

action being performed, and 2) the object that it will be performed on.

e.g. abort();
 set_pixel();
 get_time();

a. Functions that return Boolean values should be clear about what input returns true.

e.g. if (is_active(windowHandle)) ...

b. Functions that return mathematical computations should be named after the operation being

performed.

e.g. val = factorial(num);

c. Nouns describing the object are not used when redundant.

e.g. class Stack {

 int popStack();

 };

 Stack stk;

 stk.popStack();

 the following is preferable:

 class Stack {

 int pop();

GATS Page 3 – 12 G. Santor

 };

 Stack stk;

 stk.pop();

d. Nouns describing the object are not used when easily inferable.

e.g. template<typename T> void swap(T& a, T& b) { ...

 replaces:
 void swap_int(...

 void swap_double(...

 void swap_string(...

5. Use camelBackCase for the names of normal variables (and functions, and methods in Java).

e.g. unsigned nElements;

 void glVertex3d(double, double, double);

 double Timer::getTime();

6. Use saddle-back case for the names of non-member functions.

e.g. void selection_sort(std::vector<unsigned>& a);

7. Use UPPER_CASE for the names of constant items and macros. Upper case words are separated by an

underscore character (‘_’).

e.g. unsigned const MAX_ELEMENTS = 42;

8. Do not name macros with short names often used as template parameter names such as T and U.

9. Decorate global variables (not constants) with a ‘g_’ prefix.

e.g. long g_processId;

10. Use TitleCase for the names of class, structures and enumerated types and typedefs.

e.g. class Timer;

 struct ListNode;

11. Decorate member variables consistently with an ‘m_’, ‘m’, or postfix underscore.

e.g. class Timer {

 ...

 private:

 long m_elapsedTime;

 long mElapsedTime;

 long elapsedTime_;

 };

The ‘m_’ style is most appropriate to code developed specifically for the Microsoft Windows platform.

12. Do not variable shadow! Also called name shadowing, and variable masking.

e.g. public class Foo {

 private long bar;

 public Foo(long bar) { this.bar = bar; }

 }

Some programmers (particularly in the Java world), use variable shadow to avoid having to introduce a

new name for a parameter that will be stored in a member variable. Shadowing is frowned upon by many

programmers because it is a small step away from an error, that is easy to miss.

e.g. public class Foo {

 private long bar;

 public void do() {

 long bar = 42;

 // lots of code...

 bar *= do_something();

 }

 }

The ‘bar *= do_something();’ line… does it refer to the local variable ‘bar’ or the member

GATS Page 4 – 12 G. Santor

variable ‘bar’. The intent of the programmer has not been captured in the code, and therefore can lead to

confusion about which variable the programmer wanted to use.

Consider instead ornamenting the names of your member variables, either the ‘m’ prefix or the

‘_’ suffix.

e.g. public class Foo {

 private long mBar;

 public Foo(long bar) { mBar = bar; }

 }

And:

e.g. public class Foo {

 private long mBar;

 public void do() {

 long bar = 42;

 // lots of code...

 mBar *= do_something();

 }

 }

In the second example you should endeavour to find a better name than ‘bar’ for the local variable

– use your imagination, and avoid the confusion.

13. Decorate static member variables with a ‘cs_’ prefix.

e.g. template<typename T>

 class Singleton {

 ...

 private:

 static T* cs_pSingleton_;

 };

14. Decorate static local variables with an ‘s_’ prefix.

15. Do not use names that start with an underscore (SA-OCT04). Underscores are traditionally prefixed to

identifiers in their object file representations (which assembly language programmers need to reference).

Prefixed underscores produce unnecessary confusion.

16. Do not use double underscores anywhere in an identifier especially as a prefix. They are often confused
with system and implementation specific reserved words.

e.g. __argc is defined in Microsoft Windows GUI applications.

17. Do not use names that differ only by the presence of upper- or lower-case letters.

e.g. int nStudents, nstudents;

18. Names should not include abbreviations that are not generally accepted.

19. Choose identifier names that suggest usage.

20. Write code in such a way that it is easy to change the prefix.

21. Encapsulate global variables, constants, enumerated types and typedefs in a namespace but prefer scoping

them to a class when possible.

22. When declaring identifiers that are constant, apply the constant modifier after the type.

‘int const MAX = 42;’ is preferred to ‘const int MAX = 42;’

The value of this style becomes apparent when reading pointer declarations. ‘const int * p;’ is

typically read by humans as, “a constant integer pointer.” Is the integer constant or the pointer constant?

GATS Page 5 – 12 G. Santor

Consider: ‘int * const p;’ The pointer is clearly the constant, not the integer. We read the

declaration as, “a constant pointer to integer.” We are unambiguous since we read the declaration right to

left.

By writing ‘const int * p;’ as ‘int const * p;’ and reading right to left we hear, “a pointer to

constant integer”, which is both correct and unambiguous.

Therefore ‘int const * const p;’ can be read as, “a constant pointer to a constant integer.”

23. Don’t use Hungarian notation in C++, only C. C++ is type-safe so the purpose of Hungarian notation is

unnecessary duplication. It is also impossible to apply to template parameters.

Expressions and Statements

Terminology
1. RAII – Resource Allocation Is Initialization. A variable or object will receive its initial value during

allocation of that variable or object.

2. Smart Pointer – Any resource management object that automatically handles resource deallocation when

the object loses scope. They may or many not be reference counted.

Layout

Indenting, word spacing, line spacing and line-length are the most import aspects of code layout.

1. The amount to indent is not important to standardize (SA-OCT04). The indent amount should however be

consistent within a file.

2. Indent the body of functions, loops and if-else statements to show structure.
// bad

int c; for(c = 0; a[c] != 0; ++c);

return c;

// good

int c;

for(c = 0; a[c] != 0; ++c)

 ;

return c;

3. Format scope brackets consistently! Use only one of the standard styles throughout your code.

/* K&R – named after Kernighan and Ritchie, because the examples

 in their book "The C Programmer Language” are formatted this

 way. Also known as "kernel style" or "One True Brace Style"

 (1TBS). Tabs are 4 or 8 (usually) spaces. */

for (int i = 0; i < n; ++i) {

 double x = sin(theta * i);

 cout << i << endl;

}

GATS Page 6 – 12 G. Santor

/* Allman – named after Eric Allman, who wrote many BSD-Unix

 utilities. Also known as "BSD style" and is preferred by

 Visual Studio. Tabs are 4 (usually) or 8 spaces. */

for (int i = 0; i < n; ++i)

{

 double x = sin(theta * i);

 cout << i << endl;

}

/* GNU – named after the style used in the GNU emacs editor and

 other Free Software Foundation (FSF) code. Tabs are 4 spaces

 and the braces are midway between the tabs. */

for (int i = 0; i < n; ++i)

 {

 double x = sin(theta * i);

 cout << i << endl;

 }

/* Whitesmith – named after the style used in examples that

 shipped with the early compiler "Whitesmiths C". Tabs are

 4 or 8 (usually) spaces. */

for (int i = 0; i < n; ++i)

 {

 double x = sin(theta * i);

 cout << i << endl;

 }

4. There is no standard line length. However, a single line should not wrap or exceed the width of a typical

window. A good guideline is 10 words per line (SA-OCT04).

Statements
1. Use explicit RAII and smart pointer (SA-OCT04). This practice increases the likelihood that your code

will be exception safe and able to handle multiple function exit points.

2. Declare variables as close to the first use of the variable as possible. There is a statistical relationship

between the number of lines between a variables declaration and its first use and the number of bugs in a
system.

e.g. void bad_func() {

 bool done = false;

 ... // opportunity to accidentally modify ‘done’

 while (!done) {

 ... // loop body

 }

 }

 void good_func() {

 ... // opportunity to accidentally modify ‘done’

 bool done = false;

 while (!done) {

GATS Page 7 – 12 G. Santor

 ... // loop body

 }

 }

3. Prefer for-loop counter declaration in the for loop statement over prior to the for-loop. for-loop declaration
limits the scope of the counter variable to the duration of the for loop.

e.g. int bad;

 for (bad = 0; bad < n; ++bad) { ... }

 // bad still exists

 for (int good = 0; good < n; ++good) { ... }

 // good does not exist

4. Use for(;;) or while(1) to code an infinite loop, but prefer exit conditions.

5. Don’t use goto (unless there is no other solution).

Expressions
1. Initialize variables during declaration. Code is more compact. Many objects can perform initialization at

construction more efficiently than construction followed by assignment.
 std::string s;

 s = "Kernighan";

May requires two memory allocations, one during construction and one during assignment in addition to

one memory de-allocation.
 std::string s = "Kernighan";

Only requires a single memory allocation and no memory de-allocations.

2. Prefer pre-increment and pre-decrement to post-increment and post-decrement. Post-increment/decrement

may require the creation of a temporary value, whereas pre-increment/decrement does not.

e.g. for (int i = 0; i < n; i++) ... // bad

 for (int i = 0; i < n; ++i) ... // good

3. Prefer the arithmetic assignment operators to separate arithmetic and assignment operators.

e.g. x = x + 2; ... // bad

 x += 2; ... // good

Arithmetic assignment operators can prevent some order of operations errors.

e.g. x = x * y + 2; // bad – missing parenthesis

 x = x * (y + 2); // good – correct parenthesis

 x *= y + 2; // good – parenthesis unnecessary

4. Don’t store a result prior to return that result.

e.g. double mean(double sum, int nElements) {

 double average = sum / nElements;

 return average;

 }

Should be:

e.g. double mean(double sum, int nElements) {

 return sum / nElements;

 }

5. When mixing unrelated operators (e.g. < <= == != >= > with && ||) use parentheses to remove

ambiguity in the understanding of an expression.

6. Use parentheses to make your expressions clearer.

7. Use the natural form of expressions.

8. Break up complex expressions.

9. Use the ?: operator only for short expressions, and only where it does not implement business logic.

GATS Page 8 – 12 G. Santor

10. Explicitly cast the result expressions of the ?: operator when the result expressions are a different type

than the value being assigned to.
 double x = booleanCondition ?

 integerExpression :

 doubleExpression;

Should be:
 double x = booleanCondition ?

 static_cast<double>(integerExpression) :

 doubleExpression;

Compilers will typically perform an implicit cast of one result expression to the type of the other result

expression. This most often confuses templated and overloaded functions.

Functions

Terminology
1. Input parameter is a parameter whose value originates in the calling scope and whose calling scope value is

not modified by the function.

2. Mutable parameter or modifiable parameter is a parameter whose value originates in the calling scope but

whose value is modified by the function.

3. Output parameter is a parameter whose value originates in the function and whose calling scope value is set

by the function.

Parameters
1. Input parameters should be passed by value for primitives or constant reference for objects.

2. Mutable and output parameters should be passed by non-constant reference.

3. Output or mutable parameters should precede input parameters in a function parameter specification. The

output parameters should be first so as to mimic the order of assignment operations.

e.g. char* strcat(char* dest, const char* src);

 is the C-language equivalent to
 string& operator += (string& dest, const string& src);

 which mimics
 dest += src;

 void add(Matrix& res, const Matrix& lhs, const Matrix& rhs);

 mimics
 res = lhs + rhs;

4. Parameters representing the left and right operands of a binary operator should be called lhs and rhs

respectively.

Commenting
Commenting serves four purposes within code:

1. To document the design or purpose of the code.

2. To document the usage of the code.

3. To explain difficult code.

4. To generate code documentation.

GATS Page 9 – 12 G. Santor

General Principles
1. Comment as you code! Commenting is a tool to help you and others understand the code you write.

2. If a comment doesn’t help understanding – don’t write it.

3. Comments should as a minimum identify every file.

4. Don’t go overboard! Too much commenting is almost as bad as too little.

Documenting Design
1. Use program description language (PDL)1 which is an English-like description of the steps required to

solve your problem. Guidelines for PDL usage are described by Steve McConnell2:

a. Use English-like statements that precisely describe specific operations.

b. Avoid syntactic elements from the target programming language. PDL allows you to design at a

slightly higher level than the code itself. When you use programming-language constructs, you

sink to a lower level, eliminating the main benefit of design at a higher level, and you saddle

yourself with unnecessary syntactic restrictions.

c. Write PDL at the level of intent. Describe the meaning of the approach rather than how the

approach will be implemented in the target language.

d. Write PDL at a low enough level that generating code from it will be nearly automatic. If the PDL

is at too high a level, it can gloss over problematic details in the code. Refine the PDL in more

and more detail until it seems as if it would be easier to simply write the code.

e. Once the PDL is written, you build the code around it and the PDL turns into programming-

language comments.

2. PDL comments should be written above the line or block of code whose purpose it describes.

e.g. // get a number within the guess range

 int number;

 do {

 cin >> number;

 } while (1 <= number && number <= 10);

3. Function and method comments should document:

a. The purpose of the function (i.e. what it does, not how it does it).

b. The return value of the function. What is returned, what range of values are possible.

c. Each parameter of the function. What is the purpose of the parameter, or what does it represent.

Document any preconditions placed on the parameter.

d. Document any side effects or state changes caused by calling the function. Carefully note state

changes for both successful and unsuccessful execution

e. Document any exceptions that could be generated by the function.

 e.g. /*! \fn int factorial(int n)

 \return The factorial of 'n'

 \param n [in] A non-negative integer.

 Calculates the factorial of a number (n!).

 \note Passing a negative integer will result in an

1 PDL was originally developed by the company Caine, Farber & Gordon in 1975.
2 McConnell, Steve (1993) Code Complete Microsoft Press.

GATS Page 10 – 12 G. Santor

 invalid result */

 int factorial(int n) { … }

Explaining Code
1. Place comments on the end only to explain cryptic code. Cryptic code can be thought of as code that

seasoned programmers would have to stop and think about what is happening.

e.g. a = !!b; // map 0 -> 0, !0 -> 1

2. Do not explain the obvious – i.e. something that can be easily looked up or something that any experienced

programmer would know.

e.g. ++x; // increment x by one

Generating Code Documentation
DOxygen is our preferred code documentation system.

1. Comment files with the following information located at the top of the file:

/*! \file: filename.cpp

 \author Garth Santor

 \date 2003-04-17

 \version 0.1

 \note Developed for Visual C++ 7.0/GCC 3.2

 \brief Implementation of …

 */

2. Comment functions with the following information located immediately before the function:

/*! \fn unsigned count_bits(unsigned var)

 \brief Count of set bits in variable. (1 bits)

 \param var [in] variable whose bits will be counted.

 \return Number of bits in var that are set to 1. */

unsigned count_bits(unsigned var) {

Macros
1. Prefer an inline function or a templated function to macro.

 #define MAX(a,b) ((a) > (b) ? a : b)

Macro MAX allows arguments ‘a’ and ‘b’ to be of different types. The type conversion required to

compare the arguments is done implicitly and therefore there is the potential for the conversion to be done

incorrectly.
 template<typename T> inline T& max(T& a, T& b) {

 return a > b ? a : b ;

 }

Function max guarantees that arguments ‘a’ and ‘b’ are the same data type. If different data types are to be

compared, the programmer must explicitly convert one of the types.

2. Prefer constants to macros. Constants have a specific data type and can be type-checked by the compiler.

Macro literals can be implicitly converted to other, potentially incompatible, data types.
 #define VAL 42

VAL could be interpreted by the compiler as a char, int, float, or double.

 constexpr int CVAL = 42;

CVAL can only be type int.

GATS Page 11 – 12 G. Santor

Data Structures
1. For any casual use of an array, use std::vector<T> instead. The STL vector container provides

flexibility, safety and performance levels close to or identical to arrays.

Files/Source Code
1. Name C++ source files with a .cpp extension.

2. Name C++ files the same as the primary class they define and with lower case.

3. Name C/C++ header files with a .h or .hpp extension. The .hpp extension makes it very clear that this is a

C++ header and not a C header. Favour the .hpp extension for C++ specific header files.

4. Protect header files from multiple includes with a header guard.
#ifndef GUARD_myheader_h

#define GUARD_myheader_h

… // body of header file

#endif

5. Include in your header file every header file required to declare the data types used by your header file.

You shouldn’t assume that another header file will always include something for you.
/** @file NameList.hpp */

#ifndef GUARD_mystack_h

#define GUARD_mystack_h

#include <string>

#include <vector>

typedef std::vector<std::string> NameList;

#endif

6. When nesting header files (include a header within a header), try to minimize the nest. Only include the

header files required by the declarations within your header file.

7. Never implement a non-templated or non-inlined function in a header file. The linker will get confused

about which implementation to use when that header is included in more than one source file.

8. Never code a using statement in the global scope of a header file. Always fully resolve the names of

classes and types in the global scope of a header file.

9. Avoid functions or methods that are too long. Break down your logic into separate steps, use functions and

function calls (private member functions). There are rare exceptions where it isn't feasible to limit the size,

check with your prof if you think you have such a case, they do occur. General rules of method/functions

are that they:

a. do only one thing

b. be under 25 line (including spaces) preferably

c. be under 50 lines if at all possible.

d. Have only one return statement and it is the last statement in the method.

Or possibly have two as the two cases of an extremely simple if statement.

Templates
1. Template parameters are declared as meta-type class if they can only be resolved by a user-defined type,

or declared as meta-type typename if they can also be resolved by primitive types.

GATS Page 12 – 12 G. Santor

2. Document (via commenting) all extension points within your template. Template extension points are

points within the code where the behaviour of the templated code could be modified by a template

parameter.

Example:

template <typename T>

void func(T obj) {

 typename SomeTraits<T>::some_type x;

 obj.meth();

 cout << obj;

 f(obj);

}

The extension points are:

• data type ‘x’

• the method called ‘meth’

• the stream insertion operator – ‘operator <<’

• the parameterized function ‘f’

 Documentation:

 /*! \fn template<typename T> void func(T obj)

 …

 \note Extension point: SomeTraits<T>::some_type

 \note Extension point: T::meth()

 \note Extension point: operator << T

 \note Extension point: f(T)

 */

Appendix A: References
FW-78 Funk and Wagnalls Standard College Dictionary: Canadian Edition (1978)

KP-99 Kernighan, Brian & Pike, Rob (1999) The practice of programming. Addison-Wesley.

SA-OCT04 Sutter, Herb & Alexandrescu, Andrei ‘C++ Coding Standards: C/C++ Users Journal,

October 2004’

Appendix B: Things to do
• Python variable names are saddle_back.

• Reorganize the rules around the inputs, not the types.

• Python strings? Double quote vs. single quotes?

